REPORT No. 140.

LIFT AND DRAG EFFECTS OF WING-TIP RAKE.

By A. F. ZAHM, R. M. BEAR, AND G. C. HILL,

Bureau of Construction and Repair, Navy Department.

				*	
				e entrepo <mark>nte</mark> n e e	
		•			
			·		

REPORT No. 140.

LIFT AND DRAG EFFECTS OF WING-TIP RAKE.

By A. F. ZAHM, R. M. BEAR, and G. C. HILL.

INTRODUCTION.

In order to furnish some needed data for wing end design, models of the Royal Aircraft Factory 6, Albatross, and Sloane aerofoils were made, verified, and tested at 35 miles per hour in the 4 by 4 foot wind tunnel, to determine the lift and drag effects of varying the amount of rake of the wing tips. The results are submitted in this report for publication by the National Advisory Committee for Aeronautics by permission of the Bureau of Construction and Repair, Navy Department.

DESCRIPTION OF MODELS.

Figures 1, 2, and 3 give the chief dimensions of these models; also their offsets, both specified and actual. The models were planed out of a bronze casting, as usual, and were then shaped at the ends by running fine saw cuts across the finished form; first obliquely to give the longer tip, as shown, then squarely to detach this. Dowel pins were provided by which the tips could in each case be readily slipped into their proper position or removed. The longer tip, after its test, was amputated to make the shorter one. The straight oblique edges of the tips were rounded to an approximately circular bevel to diminish the head resistance. The surface of the aerofoils was not shellacked nor polished but left smooth and bright as it came from the automatic planer.

Fig 1.—Dimensions of Albatross serofoil.

[All dimensions given as decimal part of chord.]

Lower camber:	.0197 .0213	.0337 .035	.050 .051	.0707 .070	.0827 .081	.090 .0873	.094 .0913	. 0963 . 0933	.094 .0910	.0857 .083	.0733	.060 .057	.043 .0403	.0247	.015 .0127	.0053 .0027	.0037
Specified	.000	.002 .0013	.006 .0057	.0127 .0123	.0177 .0173	.0213 .021	.0237 .024	.025 .0263	.0263 .0277	. 025 . 0267	.0217 .0233	.0177 .0197	.0127 .0147	. 0067 - 0087	.003 .004	.000	.0037

O fisets (measured from and 1 to chord.)

Fig. 2,-Dimension of Sloans serofoll.

[All dimensions given as decimal part of chord.]

Distance from leading							7.0						-	
edge	0.000	0.025	0.060	0.100	0.200	0.300	0.400	0.500	0,600	0.700	0.800	0.900	0.982	1.000
Upper camber: Specified	.007	. 0257	.034	0437	. 0527	. 0568 . 055	. 0543 0547	. 058 . 0517	. 0483 . 0467	.041	. 0327	. 0213	0000	.0057
Actual Lower camber:	.007	. 0257	. 0347		.0517	* (E.)	1023	. 1					1	1 1
Specified	.007	.0007	.000	.0013	.005	. 0063 . 0057		.0047	.0037	.0033	.002 .0013	.0007	.0053	
1							j							<u>'</u> '

Offsets (measured from and __to_chord).

Fig. 3.—Dimensions of R. A. F. 6 aerofoil.

[All dimensions given as decimal part of chord.]

Distance from leading edge. Upper camber: Specified. Actual	0.000 .005 .005	0.0123 .022 .024	0.025 0.32 .034	0. 050 . 044 . 0467	0.100 .060 .0623	0.200 .074 .0753	. 0767 0783	0.400 075 0763	0, 050 . 071 . 0723	0.600 .0647 .066	0. 700 . 0557 . 0567	0.800 .044 .0453	0.900 .027 .0283	1.000 .005 .0067
Lower camber: Specified Actual	. 005 . 0043	.000	.0007 0003		.004 .0037	. 0087 . 0063	. 007 3	.0087 .008	. 0053 . 007	.0043 .0053	.0033	.002 .003	. 001 . 0013	.005 .005

Offsets (measured from and \(\pm\) to chord).

METHOD OF TEST.

During the tests each aerofoil in turn was held vertical and well upstream with a thin flat steel bar which pointed horizontally forward from the tip of the balance spindle and was slitted at its end, made to clamp the after middle of the model, and soldered to it. Thus the resultant drag at all angles of attack was horizontal and on a level with the aerofoil center. After a complete set of lift and drag readings at all incidences from -6° to 16° were taken with square, medium-raked, and long-raked tips, the tests were repeated with the holder unsoldered from the aerofoil but not removed. During these check runs the model was set in incidence with a dummy end spindle reaching down from the tunnel ceiling, and was steadied with horizontal stay wires fixed to the tunnel walls.

RESULTS OF THE TEST.

Tables I to XII, inclusive, and figures 4, 5, and 6 give the data of the test and the values derived therefrom. The general effect can best be seen in the comparative Tables IV, VIII, and XII. These show that for all three of the aerofoils and at practically all angles of incidence the lift coefficient is greater with the half tip, and still greater with the whole tip, than with the square one. The percentage increase is given in the columns marked "lift coefficient."

The columns of drag coefficients show that there is little to choose between the half and the whole tip, but that both give a considerably greater drag coefficient than that of the standard square tipped aerofoil. A few exceptions to this general statement may be noted in the drag coefficient columns. As seen in the last two columns of these tables, the general effect of the

Fig. 4.—Albaiross aerofoll. Lift and drag coefficients and L/D. Air speed 35 m. p. h.

Fig. 5.—Sloane aerofoil. Lift and drag coefficients and L/D. Air speed 35 m. p. h.

raked tips is to improve the lift/drag of the aerofoils at all except the higher angles. At incidences below the angles of greatest efficiency the raked tips on all three of the aerofoils cause a decided improvement of efficiency which is greater for the long raked tip than for the short one.

Fig. 7.—Albatross aerofoli. Lift coefficients for various tips. Air speed 35 m. p. h.

ACTUAL v. COMPUTED VALUES.

Figures 7, 8, and 9 give the foregoing lift coefficients plotted against computed values for raked tips. The method of computing the effect of rake was taken from Reports & Memoranda No. 575 of the British Advisory Committee for Aeronautics, and need not be given in

detail here. Over a considerable range of all the graphs the computed values agree closely with the observed values for raked tips; but in the region of maximum lift the computed values are increasingly too large.

Fig. 9.—R. A. F. 6 serofoli. Lift coefficient for various tips. Air speed 35 m. p. h.

Though no general conclusions can be drawn from such a limited study, it furnishes some evidence in favor of the common practice of pointing the wing tips obliquely backward. Doubtless the end effect for wings, like that for struts, is largely due to local changes of flow, and hence must be relatively of less importance as the aspect ratio increases. Both phenomena could be better elucidated by mapping the flow in the region where the overspill occurs, and noting the improved smoothness caused by sharpening the ends.

TABLE I.—Li t and drag coefficients and lift/drag—18 by 3 inches R. A. F. 6 aerofoil without wing tips—air speed 35 miles per hour.

			<u> </u>		
Angle of incidence (degrees).	Lift coeffi- cient L.	Drag coeffi- cient D.	Liit/drag.	Lift coeffi- clent Ky.	Drag coeffi- cient K _s .
- 6 - 8 - 1 - 0 + 1 2 3 4 6 8 10 12 + 16	-0.1584 0281 + .0618 .1189 .1709 .2138 .2528 .2897 .3613 .4327 .5013 .5652 .5834 + .6830	0.0403 .0214 .0145 .0130 .0127 .0132 .0145 .0167 .0223 .0291 .0372 .0465 .0568 .0729	- 3.93 - 1.78 - 4.25 - 9.15 - 13.46 - 16.20 - 17.43 - 17.43 - 17.43 - 18.20 - 14.87 - 13.48 - 11.94 - 1.94 - 1.94	-0.000809 -000194 +000316 000807 000873 001092 001291 001479 002210 002560 002835 002979 +002875	0. 0002058 .0001095 .0000740 .0000666 .0000648 .0000672 .0000742 .000051 .0001138 .0001486 .0001496 .0001902 .0002374 .0002388 .0003725

TABLE II.—Lift and drag coefficients and lift/drag—18 by 3 inches R. A. F. 6 aerofoil with half wing tips—air speed 35 miles per hour.

Angle of incidence (degrees).	Lift coeffi- cient L.	Drag coeffi- cient D _o .	Lift/drag.	Lift coeffi- cient Ky.	Drag coeffi- cient Kz.
-6 -3 -1 0 +1 2 3 4 6 8 10 112 114 +16	-0.1726 0412 +.0669 .1307 .1849 .2308 .2723 .3114 .3836 .4634 .5231 .5848 .6038 +.5848	0. 0406 . 0205 . 0141 . 0128 . 0128 . 0133 . 0147 . 0221 . 0291 . 0291 . 0292 . 0472 . 0589 . 0779	- 4.201 - 2.01 + 4.74 10.24 11.84 11.84 11.55 13.83 10.25 + 7.51	-0.000382 - 000211 + 000342 000945 001179 001391 001591 002572 002672 002987	0.0002074 .0001048 .0000720 .0000730 .0000645 .0000678 .0000758 .0001127 .0001127 .0001449 .0001917 .0002411 .0003008 .0003976

TABLE III.—Lift and drag coefficients and lift/drag—18 by 3 inches R. A. F. 6 aerofoil with whole wing tips—air speed . 35 miles per hour.

Angle of incidence (degrees).	Lift coeffi- cient L.	Drag coeffi- cient D _e .	Lift/drag.	Lift coeffi- cient K _y .	Drag coeffi- cient K _x .
- 6 - 3 - 1 + 1 3 4 6 8 10 12 14 + 16	-0.1758 - 0.407 + 0741 - 1383 - 1962 - 2415 - 2229 - 3219 - 33957 - 4681 - 5336 - 5542 - 5642 + - 5621	0.0397 .0204 .0138 .0125 .0124 .0133 .0152 .0177 .0273 .0314 .0405 .0601 .0601 .0601	- 4.42 - 1.99 + 5.303 15.803 18.157 18.261 14.505 13.157 9.442 + 6.78	-0.000995000208 +.000378000706000996001233001643002020002379002724002952003083002569	0.0002025 .0001043 .0000707 .0000640 .0000630 .0000678 .0000777 .0000902 .0001213 .0001601 .0002057 .0002577 .0003222 .0004233

TABLE IV.—Comparison of 18 by 3 inches R. A. F. 6 aerofoil characteristics for different wing tips—aerofoil without wing tips taken as standard air speed 35 miles per hour.

	Lift coe	fficient.	Drag coe	fficient.	LiftA	Irag.
Angle of incidence (degrees).	Haif wing tips.	Whole wing tips.	Half wing tips.	Whole wing tips.	Half wing tips.	Whole wing tips.
- 6 - 3 - 1 0 + 1 2 3 4 6 8 10 12 14 + 16	1.090 1.081 1.082 1.100 1.051 1.079 - 1.075 1.063 1.061 1.043 1.044 1.053 1.035	1. 106 1. 087 1. 198 1. 163 1. 142 1. 118 1. 1108 1. 1085 1. 077 1. 085 1. 077 1. 085 1. 018	1.007 .958 .972 .985 .992 1.007 1.013 1.000 1.008 1.013 1.013 1.037 1.068	0.985 .953 .952 .962 .977 1.007 1.048 1.060 1.067 1.079 1.038 1.047 1.110	1.081 1.118 1.116 1.087 1.073 1.080 1.073 1.045 1.034 1.034 1.036 1.000	1. 125 1. 146 1. 255 1. 205 1. 174 1. 122 1. 065 1. 050 1. 023 1. 000 978 978

TABLE V.—Lift and drag coefficients and lift/drag—18 by 3 inches albartoss aerofoil without wing tips—air speed 35 miles per hour.

Angle of incidence (degrees).	Lift coeffi- cient L.	Drag coeffi- cient D.	Lift/drag.	Lift coeffi- clent K _y .	Drag coeffi- cient K _z .
	-0.1156 + .0852 + .0646007224712860324236234372510757806311 + .6194	0. 0392 . 0205 . 0161 . 0161 . 0170 . 0185 . 0205 . 0228 . 0297 . 0379 . 0470 . 0578 . 0713	- 2 55 + 2 518 + 10.20 12 55 14 50 15 62 15 75 15 76 15 76 15 76 15 76 15 76 16 76 17 76 17 76 18 76 1	-0.000591 + .000343 .000541 .001058 .001262 .001460 .001656 .001253 .002253 .002952 .003224 .003223 + .003163	0.002002 .0001047 .0000825 .0000825 .0000847 .0000847 .0001164 .0001619 .000187 .000290 .000290 .000290 .000290

TABLE VI.—Lift and drag coefficients and lift/drag—18 by 3 inches albatross aerofoil with half wing tips—air speed 35 miles per how.

Angle of incidence (degrees).		Drag coeffi- cient D _e .	Lift/drag.	Lift coeffi- clent Ky.	Drag coeffi- cient K _x .
- 8 - 3 - 1 0 + 1 2 3 4 6 8 10 12 14 +16	-0.1215 + .0736 .1798 .2237 .2230 .3066 .3463 .3849 .4506 .5362 .6082 .6521 .6417 + .0263	0.0385 .0209 .0161 .0162 .0172 .0190 .0214 .0312 .0394 .0486 .0599 .0740	- 3.53 + 3.53 11.16 15.27 16.14 16.14 16.52 14.61 12.52 13.65 14.61 14.61 14.62 14.63 16.63 16.6	-0.000621 + .000919 -001143 -001343 -001506 -001771 -001966 -002353 -002739 -003107 -003331 -003278 + .003199	0.0001968 .0001066 .0000522 .0000529 .0000579 .000193 .0001235 .0001235 .0002013 .0002013 .0002013 .0003779 .000369

TABLE VII.—Lift and drag coefficients and lift/drag—18 by 3 inches albatross aerofoil with whole wing tips—air speed 55 miles per hour.

Angle of incidence (degrees).	Lift coeffi- cient L ₀ .	Drag coeffi- clent D _c .	Litt/drag	Lift coeffi- cient Ky.	Drag coeffi- cient K _z .
-6 -8 -1 0 +1 2 3 4 6 8 10 12 14 +16	-0.1250 +.0796 1.925 2.368 2.363 2.3639 4.038 4.804 5.516 6.079 6.410 6.246 +.6043	0. 0381 .0206 .0159 .0160 .0171 .0189 .0215 .0243 .0318 .0409 .0512 .0632 .0778	- 3.28 + 3.88 12.08 14.68 17.08 16.48 17.08 16.59 16.59 16.96 11.86 11.86 10.84 11.86	-0.000638 + .000408 .000983 .001209 .001649 .001649 .001858 .002061 .002462 .002816 .003103 .003272 .003189 + .003085	0.0001946 .0001052 .0000814 .0000816 .0000871 .0000968 .0001242 .0001883 .000290 .0002416 .000290 .0002416 .0003970 .0004878

TABLE VIII.—Comparison of 18 by 3 inches albatross aerofoil characteristics for different wing tips—aerofoil without wing tips taken as standard—air speed 55 miles per hour.

	Lift coe	fficient.	. Drag co	efficient.	I.ift/	irag.
Angle of incidence (degrees).	Half wing tips.	Whole wing tips.	Half wing tips.	Whole wing tips.	Half wing tips.	Whole wing tips.
- 6 - 3 - 1 0 + 1 2 3 4 6 8 10 12 14 + 16	1. 050 1. 128 1. 090 1. 079 1. 063 1. 072 1. 069 1. 053 1. 050 1. 052 1. 052 1. 052 1. 016 1. 011	1. 081 1. 220 1. 169 1. 142 1. 133 1. 127 1. 121 1. 114 1. 098 1. 080 1. 051 1. 015 . 990 . 976	0.983 1.019 .994 1.006 1.011 1.027 1.044 1.061 1.039 1.033 1.037 1.037	0.972 1.004 .982 .994 1.005 1.021 1.038 1.065 1.070 1.079 1.053 1.093 1.090 1.082	1. 067 1. 107 1. 094 1. 074 1. 074 1. 053 1. 046 1. 022 1. 001 1. 005 1. 011 1. 018 . 988 . 981	1. 111 1. 213 1. 184 1. 161 1. 182 1. 104 1. 075 1. 044 1. 026 1. 000 . 965 . 929 . 909 . 903

TABLE IX.—Lift and drag coefficients and lift/drag—18 by 3 inches Sloane aerofoil without wing tips—air speed 35 miles per hour.

Angle of incidence (degrees).	Lift coeffi- cient L ₀ .	Drag coeffi- cient D.	ِ Lift/drag. آِ	Lift coeffi- cient Ky.	Drag coeffi- cient K _z .
- 63 - 10 + 12 3 4 6 8 10 12 14 + 16	-0.1645 0518 +.0151 .0509 .0944 .1513 .2016 .2396 .3091 .3739 .4276 .4638 .4809 +.4677	0.0330 .0158 .0091 .0077 .0076 .0085 .0102 .0124 .0181 .0251 .0367 .0623 .1001	- 4.98 - 3.81 + 1.60 6.60 12.36 17.84 19.80 19.32 17.10 14.92 11.99 7.45 4.80 + 3.68	0.00840 000285 +.000277 .000260 .000482 .000772 .001229 .00129 .001579 .001910 .002184 .002389 +.002389 .002389	0 0001686 .0000799 .0000465 .0000394 .0000390 .0000433 .0000522 .0001279 .0001221 .0003179 .0005114 .00054488

TABLE X.—Lift and drag coefficients and lift/drag—18 by 3 inches Sloane aerofoil with half wing tips—air speed 35 miles per hour.

Angle of incidence (degrees).	Lift coeffi- cient L.	Drag coeffi- cient D.	Lift∤drag.	Lift coeffi- cient Ky.	Drag coeffi- cient K _z .
- 68 - 10 + 23 4 68 100 124 + 16	-0.1717 0532 +.0190 .0559 .1047 .1652 .2140 .2523 .3242 .3911 .4410 .4511 .4917 +.4795	0.0326 .0156 .0094 .0083 .0084 .0110 .0131 .0187 .0263 .0383 .0681 .1042 .1301	- 5.27 - 3.42 + 2.03 6.245 17.52 19.24 17.38 14.85 11.53 1.53 1.53 1.53	-0.000877 000272 + .000291 .000291 .000335 .000844 .001289 .001656 .001998 .002253 .002457 .002449	0.0001651 .0000796 .0000478 .0000421 .0000429 .0000450 .0000560 .0000570 .0000952 .0001345 .0001345 .0001845 .0003450 .0005322 .000645

TABLE XI.—Lift and drag coefficients and lift/drag—18 by 3 inches Sloane aerofoil with whole wing tips—air speed 35 miles per hour.

Angle of incidence (degrees).	Lift coeffi- cient Le	Drag coeffi- cient De.	Litt/drag.	Lift coeffi- cient Ky.	Drag coeffi- clent K _x .
- 6 - 2 - 1 0 1 2 3 6 6 8 10 12 14 16	-0.1903 - 0554 - 0502 - 0612 - 1097 - 1737 - 2233 - 2620 - 3340 - 3396 - 4456 - 4456 - 4555	0.0329 .0152 .0052 .0062 .0063 .0013 .0110 .0133 .0110 .0268 .0396 .0721 .1084 .1339	- 5.49 - 2.55 - 2.20 - 13.25 - 13.25 - 13.25 - 13.25 - 14.32 - 14.32 - 14.32 - 14.32 - 14.32 - 15.55	-0.0009200002830001030001030001812000560000887001140001343001705002040002290002455002520002428	0.001677 .000775 .000468 .000416 .000422 .000476 .000653 .000673 .00078 .0002023 .0002023 .000538 .000538

TABLE XII.—Comparison of 18 by 3 inches Sloane aerofoil characteristics for different wing tips—Aerofoil without wing tips taken as standard—Air speed 35 miles per hour.

Angle of incidence (degrees).	Lift coefficient.		Drag coefficient.		Lift/drag.	
		Whole wing tips.	Half wing tips.	Whole wing tips.	Haif wing tips.	Whole wing tips.
- 6 - 3 - 10 + 12 3 4 6 8 10 12 114 + 16	1.044 1.027 1.258 1.117 1.109 1.061 1.062 1.063 1.046 1.031 1.037 1.022 1.022	1.096 1.069 1.338 1.202 1.162 1.148 1.108 1.093 1.080 1.068 1.049 1.042 1.026 1.016	0. 988 1. 000 1. 032 1. 077 1. 104 1. 106 1. 078 1. 056 1. 033 1. 047 1. 072 1. 092 1. 041 1. 023	0.997 .976 1.010 1.064 1.091 1.078 1.072 1.061 1.067 1.109 1.109 1.109 1.109	1.058 1.033 1.222 1.045 1.007 .985 .986 .996 1.017 .995 .962 .947 .983 1.000	1. 102 1. 102 1. 325 1. 136 1. 072 1. 045 1. 021 1. 025 1. 002 1. 002 1. 002 1. 003 1. 004 1. 004 1. 005 1.